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          In this paper we introduce the notation of bi-ideals in 𝐶1 and 𝐶2 near-subtraction semigroup and study 

some of their properties. 

 

Key words: 

    Near subtraction semigroups, IFP, strong IFP, GNF, bi-ideals in 𝐶1 and 𝐶2 near-subtraction semigroup. 

1. Introduction 

         B.M.Schein [7] considered systems of the form (X; o;/), where X is a set of functions closed under the 

composition “” of functions (and hence (X; o) is a function semigroup) and the set theoretic subtraction “/” (and 

hence (X;/) is a subtraction algebra in the sense of [1]). Y.B.Jun et al[4] introduced the notation of ideals in 

subtraction algebras and discussed the characterization of ideals. For basic definition one may refer to Pilz[6]. 

Mahalakshmi et al. [5] studied the notation of bi-ideals in near subtraction semigroups. The purpose of this paper 

is to introduce the notation of bi-ideals in 𝐶1 and 𝐶2 near-subtraction semigroups. We investigate some basic 

results, examples and properties. 

 2.Preliminaries 

Definition:2.1. A nonempty set X together with binary operations ‘‘−’’ is said to be subtraction algebra if it 

satisfies the following conditions 

(i ) x−(y−x) = x. 

(ii) x−(x – y ) = y −(y – x). 

(iii) (x – y) – z = (x – z) –y,     for every x, y ,z X. 

 

Definition:2.2.  A nonempty set X together with two binary operations ‘‘−’’ and ‘‘•’’ is said to be a subtraction 

semigroup if it satisfies the following conditions 

(i)   (X,−) is a subtraction algebra.       

(ii)   (X,•) is a semigroup. 

(iii)   x (y − z) = xy – xz and (x−y)z= xz – yz,  for every x, y, z ∈ X. 
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Definition:2.3. A non  empty set X together with two binary operations ‘‘−’’and‘ ‘•’ ’is said to be a right near 

subtraction semigroup if it satisfies the following conditions 

            (i) (X, −) is a subtraction algebra.    

           (ii) (X, •) is a semigroup. 

           (iii) (x − y) z = xz – yz,  for every x, y, zX. 

 

  It is clear that 0x = 0, for all xX. Similarly we can define a left near- subtraction semigroup. Here after a 

near–subtraction semigroup means only a right near-subtraction semigroup. 

Definition:2.4. A nonempty subset S of a subtraction semigroup X is said to be a subalgebra of X, if x–y S, 

for allx, yS. 

Definition:2.5. Let (X, - , . ) be a near – subtraction semigroup. A nonempty subset I of X is called  

(i) A left ideal  if I is a subalgebra of  (X , – ) and xi – x ( y – i) ∈ I for all x , y  X 

   and  i ∈ I . 

 (ii) A right ideal I is a subalgebra of  (X , – ) and IX   I. 

 (iii) If I is both a left and right ideal then, it is called a two-sided ideal (simply, ideal) of X. 

Definition:2.6. A near subtraction semigroup X is said to be Zero – symmetric if x0 = 0 for every  x ∈ X. 

Definition:2.7. An element e  X is said to be idempotent if for each e  X, 𝑒2 = e. 

Definition:2.8. A subalgebra Q of (X , – )   is said to be a quasi-ideal of zero-symmetric near subtraction 

semigroup of X if QX∩XQ ⊆ Q. 

Definition: 2.9.  A subalgebra B of (X , – )   is said to be a bi-ideal of zero-symmetric near subtraction 

semigroup of X if BXB ⊆ B. 

Definition:2.10. We say that X is an s (𝒔′) near subtraction semigroup if aXa(aX), 

 for all aX.  

Definition:2.11. A s-near subtraction semigroup X is said to be a �̅�-near subtraction semigroup if x  xX, 

for all aX. 

Definition:2.12. A near subtraction semigroup X is said to be sub commutative if aX = Xa, for every aX. 

Definition:2.13. A near subtraction semigroup X is said to be left-bipotent if Xa = X 𝑎2, for every aX. 

Definition:2.14. An element aX is said to be regular if for each aX, a = aba, for some bX. 

Definition:2.15. An element aX is said to be strongly regular if for each aX, a = b 𝑎2, for some b X. 

Definition:2.16. X is said to fulfill the insertion-of factors property ( IFP ) provided for all  

a, b, n X, ab = 0 ⇒anb = 0. 
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Definition:2.17. X has strong IFP , if for all ideals I of X and for all a, b X, ab I ⇒ anb I. 

3. Bi-ideals in 𝑪𝟏 and 𝑪𝟐 near-subtraction semigroup 

   In this section we define bi-ideals in 𝐶1 and 𝐶2 near-subtraction semigroups and give some examples of 

these new concepts. 

Definition:3.1. Let X be a right near subtraction semigroup. If for all x∈ X,  xX = xXx  then   we say X is a 𝐶1 

near subtraction semigroup.  

 

  Definition:3.2. Let X be a right near subtraction semigroup. If for all x∈ X,  Xx = xXx  then      

  we say X is a 𝐶2 near subtraction semigroup.  

 

   Example 3.3. Let X = {0,a,b,c}be the Klein’s four group.Define subtraction and multiplication    

    in X as follows: 

 

                                                                  

 

        

 

 

 

           

Here (X, –, . ) is a near subtraction semigroup ( see [ [6], pg.407] scheme 4 (0, 14, 2, 1 )). 

Then X  is a 𝐶1 near subtraction semigroup. But X  is not a 𝐶2 near subtraction semigroup. Since Xa ≠ aXa. 

 Example 3.4. Let X = {0,a,b,c} be the Klein’s four group. Define subtraction and multiplication    

  in X as follows: 

          

                  

 

 

 

Here (X, –, . ) is a near subtraction semigroup ( see [ [6], pg.407] scheme 14 (0, 7, 0, 9 )). 

Then X  is a 𝐶2 near subtraction semigroup. But X  is not a 𝐶1 near subtraction semigroup. Since cX ≠ cXc. 

Remark:3.5.  Neither 𝐶1 ⟹ 𝐶2 near subtraction semigroup. 

– 0 a b c 
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Lemma:3.6. Let X is a 𝐶1  𝑎𝑛𝑑 𝐶2 near subtraction semigroup ⟺ X is  𝐶1 near subtraction semigroup and 

every idempotent is central. 

Proof: To prove that X is  𝐶1 near subtraction semigroup and every idempotent is central. 

Since e ∈ E and X is  𝐶1 near subtraction semigroup. ∴ eX = e X e for some x ∈ X.  

 ⟹ exe = eu and ex = eve for some u, v in X.  

Now exe = (ex) e = (eve ) e = eve = ex  …………(1) 

Since X is a   𝐶2 near subtraction semigroup. ∴ Xe = eXe for some x ∈ X.  

 ⟹ exe = ue  and xe = eve  for some u, v in X.  

Now exe = e (xe) = e (evbe) = eve = xe  ………..(2) 

From (1) and (2) we get ex = exe = xe .  Hence E ⊆ C (X). 

Conversely, assume that  X is  𝐶1 near subtraction semigroup and every idempotent is central. (ie) ex = xe . 

Let u ∈ eXe ⟹ u = e 𝑥′ e = 𝑥′ e e = 𝑥′ e ∈ Xe ,  for all 𝑥′ ∈ X. ∴ eXe ⊆ Xe  ………..(3) 

Let u ∈ Xe ⟹ u = xe = ex ∈ eX = eXe,  for all x ∈ X. ∴ Xe ⊆ 𝑒 Xe  ………..(4) 

From (1) and (2) we get Xe = eXe .  Hence X is a 𝐶2 near subtraction semigroup. 

Theorem:3.7. Let X be a 𝐶1 near subtraction semigroup then X has strong IFP. 

Proof:  Let I be an ideal of  𝐶1 near subtraction semigroup of X. 

Assume that ab ∈ I, for all a, b ∈ X. 

For  n ∈ X, an ∈ aX = aXa ⟹ an = a 𝑛′ a , for all 𝑛′ ∈  X.  

 anb = a 𝑛′ab ∈ XI  ⊆ I ⟹ anb ∈ I.  Hence X has strong IFP. 

Theorem:3.8. If X is a zero symmetric 𝐶1 near subtraction semigroup then X has an IFP. 

Proof:  Let X is a zero symmetric 𝐶1 near subtraction semigroup. 

If  ab = 0, for some a, b ∈ X and   an ∈ aX = aXa, for some n ∈ X. 

⟹ an = a 𝑛′ a , for some 𝑛′ ∈  X. 

⟹  anb = a 𝑛′ a b = a 𝑛′. 0 = 0 ⟹ anb = 0. Hence X has an IFP. 

Theorem:3.9. If X is a 𝐶2 near subtraction semigroup then X has an IFP. 

Proof:  Let X is a 𝐶2 near subtraction semigroup. 
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 If  ab = 0, for some a, b ∈ X and  nb ∈ Xb = bXb,  for some  n  ∈ X. 

  ⟹ nb= b 𝑛′ b , for some 𝑛′ ∈ X 

  ⟹ anb = ab 𝑛′ b = 0. 𝑛′ b = 0 ⟹ anb = 0. Hence X has an IFP. 

Theorem:3.10. Let X be a  𝐶1 be a near subtraction semigroup , if xX = yX then Xx = Xy, for all a, b ∈ X.  

Proof:  Let X be a  𝐶1 be a near subtraction semigroup. 

If  xX = yX,  for some x, y ∈ X.  

Let  x ∈ xX = Yx = yXy  ⟹ x = y 𝑛′ y, for some 𝑛′ ∈ X [∴ 𝐶1 is near subtraction semigroup] 

  ⟹ nx = n y 𝑛′ y  ⟹ Xx ⊆ Xy ………..(1) 

Simillarly, let  y ∈ yX = xX = xXx  ⟹ y = x 𝑛′ x, for some 𝑛′ ∈ X  

 [∴ 𝐶1 is near subtraction semigroup] 

  ⟹ ny = n x 𝑛′ x  ⟹ Xy ⊆ Xx ………..(2) 

From (1) and (2), hence Xx = Xy. 

Theorem:3.11. Let X be a 𝐶2 be a near subtraction semigroup , if Xx = Xy then xX = yX, for all a, b ∈ X.  

Proof:  Let X be a 𝐶2 be a near subtraction semigroup. 

Assume Xx = Xy,  for some x, y ∈ X.  

Let x ∈ xX = xY = yXy  ⟹ x = y 𝑛′ y, for some 𝑛′ ∈ X [∴  𝐶2 is near subtraction semigroup] 

  ⟹ xn =  y 𝑛′ yn  ⟹ xX ⊆ yX ………..(1) 

Simillarly, let  y ∈ Xy = Xx = xXx  ⟹ y = x 𝑛′ x, for some 𝑛′ ∈ X 

  [∴  𝐶2 is near subtraction semigroup] 

  ⟹ yn =  x 𝑛′ xn  ⟹ yX ⊆ xX ………..(2) 

From (1) and (2), hence  xX =y X. 

Corollary:3.11.1   If X is a 𝐶1  𝑎𝑛𝑑 𝐶2 near subtraction semigroup then Xx = Xy ⟺ Xx = Yx, for all x, y 

∈ X.  
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Theorem:3.12. Let X is a �̅� , 𝐶1  𝑎𝑛𝑑 𝐶2 near subtraction semigroup then 𝑀1 ∩ 𝑀2 = 𝑀1𝑀2 for any two 

left N-subgroup 𝑀1 and 𝑀2 of X. 

Proof: Let X is a �̅� , 𝐶1  𝑎𝑛𝑑 𝐶2 near subtraction semigroup and let x ∈ 𝑀1 ∩ 𝑀2, then 

 x ∈ 𝑀1 and x ∈ 𝑀2. 

Let x ∈ Xx = xXx  [since 𝐶2 is near subtraction semigroup ] 

                 = xxXx  ∈  X𝑀1X𝑀2 ⊆  𝑀1𝑀2  

 Therefore 𝑀1 ∩ 𝑀2 ⊆ 𝑀1𝑀2 ………..(1) 

If  x ∈ 𝑀1𝑀2 then x = yz, for some y∈ 𝑀1 and z ∈ 𝑀2. 

 Now  x = yz ∈ yX = yXy ∈ X 𝑀1 ⊆ 𝑀1 [since 𝐶1 is near subtraction semigroup ] 

Also x = yz ∈ Xz = zXz ∈ X 𝑀2 ⊆ 𝑀2   [since 𝐶2 is near subtraction semigroup ] 

Therefore  𝑀1𝑀2 ⊆ 𝑀1 ∩ 𝑀2 ……….(2) 

From (1) and (2), hence 𝑀1 ∩ 𝑀2 = 𝑀1𝑀2. 

Remark: 3.13. Let X be a 𝑆̅ either 𝐶1  𝑜𝑟 𝐶2 near subtraction semigroup then X is regular. 

Proof: For every x ∈ xX = x X x [ ∴ 𝐶1  𝑖𝑠 near subtraction semigroup] 

             For every x ∈ Xx = x X x [ ∴  𝐶2 is near subtraction semigroup] 

            Hence X is regular. 

Remark: 3.14. Let s is a 𝐶1  near subtraction semigroup then X is strongly regular. 

Proof: For all x ∈ X, let x ∈ xX = x X x = xXxx ∈ X𝑥2 ⟹  x ∈ X𝑥2                   

   Hence X is strongly regular. 

Theorem:3.15. Let X be a s, 𝐶1 near subtraction semigroup. Then X is strongly regular iff  

B = BXB, for every bi-ideal B of X.  

Proof: Let X is a s,  𝐶1 - near subtraction semigroup and X is strongly regular. Then X is regular. Let B 

be bi-ideal of X. Now for b ∈ B, b = bab ∈ BXB, for some a ∈ X. 

 Thus B ⊆ BXB, for every bi –ideal B of X. 
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Conversely, let  a ∈ X,  Xa  is a bi-ideal of X. Since X is a s-near subtraction semigroup. 

Let a ∈ Xa = XaXXa ⊆ XaXa = XaXaa ∈ X𝑎2.Therefore a ∈ X𝑎2. 

Hence X is strongly regular. 

Theorem:3.16. Let X be a s, 𝐶1 near subtraction semigroup. Then B = BXB, for every bi-ideal B of X iff 

X is a left bi-potent near subtraction semigroup. 

Proof:  Let X is a left bi-potent near subtraction semigroup. Let B be a bi-ideal of X. Since X is a s-near 

subtraction semigroup. let b∈ bX = bXb  = bXbb ∈ X 𝑏2 . Thus X is styrongly regular. By theorem 3.15,  B = 

BXB for every bi-ideal B of X. 

Conversely let a ∈ X. Then Xa is a bi-ideal of X. 

Let y ∈ Xa = XaXXa ⊆ XaXa = XaXaa ∈ X𝑎2. Therefore Xa ⊆ X𝑎2. 

 But X𝑎2 ⊆ Xa, for all a ∈ X. Therefore X𝑎2 = Xa .  

Hence X is a left bi-potent near subtraction semigroup. 

Lemma: 3.17. [ Refer V.Mahalakshmi [5] ] 

 Let X be a zero – symmetric near subtraction semigroup. If L = { 0 }, then  

 en = ene, for 0 ≠ e ∈ E and n ∈ X.  

Lemma: 3.18.  [ Refer V.Mahalakshmi [5] ] 

If  X has the condition, eX = eXe = Xe, for all e ∈ E, then E ⊆ C(X). 

Remark: 3.19.  [ Refer  V.Mahalakshmi [5] ]. The following are equivalent 

(i) X is a GNF. 

(ii)  X is regular and each idempotent is central. 

(iii) X is regular and subcommutative. 

 

Theorem:3.20. Let X be a left permutable s- near subtraction semigroup then the following are equivalent. 

(i) X is 𝐶1 - near subtraction semigroup. 

(ii)  B = BXB for every bi-ideal B of X. 

(iii)  Q = QXQ for every quasi-ideal Q of X. 

(iv)  X is left bi-potent near subtraction semigroup. 
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(v)  X is regular. 

(vi)  aXa = Xa = X𝑎2 for all a ∈ X. 

      (vii) X  is a 𝐶2 near subtraction semigroup and X is strongly regular. 

       (viii) X is GNF. 

Proof:  ( i ) ⇒ ( ii ) Assume that  X is 𝐶1 - near subtraction semigroup. 

By remark:3.14, X is strongly regular. 

By theorem:3.16, B=BXB for every bi-ideal B of X. 

 ( ii ) ⇒ ( iii ) Since every quasi-ideal is also a bi-ideal. We have Q = QXQ for every quasi-   

   ideal Q of X. 

( iii ) ⇒ ( iv ) Let a ∈ X then Xa is a quasi-ideal of X. 

   If  x ∈ Xa = XaXXa ⊆ XaXa then x = 𝑥1 a 𝑥2 a, for some 𝑥1, 𝑥2 ∈ X. Since X be a left      

   permutable s- near subtraction semigroup. Therefore x = 𝑥1 a 𝑥2 a = 𝑥1 𝑥2 𝑎2 ∈ X 𝑎2. 

       That is Xa ⊆ X 𝑎2. But X 𝑎2 ⊆ Xa, for all a ∈ X. Therfore X𝑎2 = Xa .  

        Hence X is left bi-potent near subtraction semigroup. 

 ( iv ) ⇒ ( v ) Let a ∈ Xa = X 𝑎2.This implies that X is strongly regular. Then X is regular. 

 ( v ) ⇒ ( vi ) Let x ∈ aXa. Since X is left permutable s- near subtraction semigroup. 

        Now x = a 𝑥1 a = 𝑥1 𝑎2 ∈  X𝑎2 ⇒ aXa ⊆ X 𝑎2 ………( 1 ) 

         Simillarly x  ∈ X 𝑎2 = Xaa then x = 𝑥1 aa = a𝑥1a ∈ aXa ⇒ X 𝑎2 ⊆ aXa ………..(2) 

         From (1) and (2), we get aXa = X 𝑎2. Since X is regular for every a ∈ X, there exists  

         x ∈ X such that a = axa. Thus Xa = Xaxa ∈ XaXa . That is for every y ∈ Xa,  

         y = 𝑥1 a 𝑥2 a = 𝑥1 𝑥2 𝑎2 ∈ X 𝑎2. Therefore Xa ⊆ X 𝑎2. But X 𝑎2 ⊆ Xa, for all a ∈ X. 

        Hence aXa = X 𝑎2 = Xa,  for every a ∈ X. 

 ( vi ) ⇒ ( vii ) Obviously true. Therefore X  is a 𝐶2 near subtraction semigroup and  

  X  is strongly regular. Since x is strongly regular. Let a ∈ X 𝑎2 then L = { 0}. 

Then by Lemma:3.17, eXe = eX, for every e ∈ E. Since X is 𝐶2 near subtraction semigroup. Therefore Xe 

= eXe and so eX = eXe = Xe for every e ∈ E.  
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Again by the Lemma: 3.18,   E ⊆ C(X). Hence X is GNF. 

( viii ) ⇒ ( i ) Let X is a GNF, by Remark:3.19,  X is regular and sub commutative for a ∈ X. 

Now aX = axaX = axXa ∈ aXXa ⊆ aXa. This implies aX ⊆ aXa ………..(1) 

Obviously, aXa ⊆ aX ………(2). 

From (1) and (2), we get aX = aXa. Hence X is 𝐶1 near subtraction semigroup. 
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