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1. Introduction

B.M.Schein [7] considered systems of the form (X; o;/), where X is a set of functions closed under the
composition “o” of functions (and hence (X; 0) is a function semigroup) and the set theoretic subtraction “/”” (and
hence (X;/) is a subtraction algebra in the sense of [1]). Y.B.Jun et al[4] introduced the notation of ideals in
subtraction algebras and discussed the characterization of ideals. For basic definition one may refer to Pilz[6].
Mahalakshmi et al. [5] studied the notation of bi-ideals in near subtraction semigroups. The purpose of this paper
is to introduce the notation of bi-ideals in C; and C, near-subtraction semigroups. We investigate some basic
results, examples and properties.

2.Preliminaries
Definition:2.1. A nonempty set X together with binary operations ¢“—" is said to be subtraction algebra if it

satisfies the following conditions

(i) x=(y—x) = X.

(i) x-(x-y)=y—-(y-X).

(i) x-y)—-z=(x—-2z)-y, foreveryx,y,zeX.

Definition:2.2. A nonempty set X together with two binary operations ¢“—>” and ¢“¢* is said to be a subtraction
semigroup if it satisfies the following conditions

(1) (X,—)is a subtraction algebra.

(i) (X,e) is a semigroup.

(ili) x(y—12z) = xy—xzand (x—y)z= xz—yz, foreveryx,y,z € X.
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Definition:2.3. A non empty set X together with two binary operations ¢‘—>’and* ¢»> *is said to be a right near
subtraction semigroup if it satisfies the following conditions

(1) (X, —) is a subtraction algebra.
(i) (XX, *) is a semigroup.
(i) (x—y)z= xz-yz, foreveryx,y,zeX.

It is clear that Ox = 0O, for all xe X. Similarly we can define a left near- subtraction semigroup. Here after a
near—subtraction semigroup means only a right near-subtraction semigroup.
Definition:2.4. A nonempty subset S of a subtraction semigroup X is said to be a subalgebra of X, if x-y €S,

for allx, yeS.
Definition:2.5. Let (X, -, . ) be a near — subtraction semigroup. A nonempty subset | of X is called

(i) Aleftideal if Iisasubalgebraof (X,—)andxi—-x(y—1i) € lforallx,y e X

and i €1.
(ii) A right ideal | is a subalgebra of (X,—)and IX< I.
(iii) If 1 is both a left and right ideal then, it is called a two-sided ideal (simply, ideal) of X.

Definition:2.6. A near subtraction semigroup X is said to be Zero — symmetric if X0 = 0 for every x e X.
Definition:2.7. An element e e X is said to be idempotent if for each e € X, ¢2 =e.

Definition:2.8. A subalgebra Q of (X, —) is said to be a quasi-ideal of zero-symmetric near subtraction

semigroup of X if QXNXQ < Q.

Definition: 2.9. A subalgebra B of (X, —) is said to be a bi-ideal of zero-symmetric near subtraction

semigroup of X if BXB < B.
Definition:2.10. We say that X is an s (s") near subtraction semigroup if ac Xa(aX),
for all ae X.

Definition:2.11. A s-near subtraction semigroup X is said to be a s-near subtraction semigroup if x e xX,

for all aeX.

Definition:2.12. A near subtraction semigroup X is said to be sub commutative if aX = Xa, for every ae X.
Definition:2.13. A near subtraction semigroup X is said to be left-bipotent if Xa = X a?, for every ac X.
Definition:2.14. An element ac X is said to be regular if for each ac X, a = aba, for some be X.
Definition:2.15. An element ac X is said to be strongly regular if for each ac X, a = b a?, for some b e X.
Definition:2.16. X is said to fulfill the insertion-of factors property ( IFP ) provided for all

a,b,neX, ab=0=anb=0.

JETIR1904R24 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 822


http://www.jetir.org/

© 2019 January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162)

Definition:2.17. X has strong IFP , if for all ideals | of X and forall a, b €X, ab €l = anb <l.

3. Bi-ideals in €; and C, near-subtraction semigroup

In this section we define bi-ideals in C; and C, near-subtraction semigroups and give some examples of
these new concepts.

Definition:3.1. Let X be a right near subtraction semigroup. If for all xe X, xX =xXx then we say X isa C;
near subtraction semigroup.

Definition:3.2. Let X be a right near subtraction semigroup. If for all x€ X, Xx = xXx then
we say X is a C, near subtraction semigroup.

Example 3.3. Let X = {0,a,b,c}be the Klein’s four group.Define subtraction and multiplication

in X as follows:
—-|0la|bjc Olal|bjc
0(0j0|0|O 0/0|0|0]O0
ajla|0jc|b al0|0jala
b|b|0|0]|0 b{Ojla|c|b
cjc|0jc|O c|O0O|lal|bjc

Here (X, —, . ) is a near subtraction semigroup ( see [ [6], pg.407] scheme 4 (0, 14, 2, 1)).
Then X is a C; near subtraction semigroup. But X isnota C, near subtraction semigroup. Since Xa # aXa.

Example 3.4. Let X = {0,a,b,c} be the Klein’s four group. Define subtraction and multiplication
in X as follows:

-|0jla|b|c Ola|b]c
0/{0[0[0]|0 0(0|0f0|O
alal0Ojala al0jla|0]|c
b(bib|0]|0 b{0/0|0|O0
clic|bja|0 c|0|la|0|c

Here (X, —, . ) is a near subtraction semigroup ( see [ [6], pg.407] scheme 14 (0, 7, 0, 9)).
Then X is a C, near subtraction semigroup. But X is nota C; near subtraction semigroup. Since cX = cXc.

Remark:3.5. Neither C; = C, near subtraction semigroup.
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Lemma:3.6. Let X isa C; and C, near subtraction semigroup < X is C; near subtraction semigroup and

every idempotent is central.

Proof: To prove that X is C; near subtraction semigroup and every idempotent is central.
Since e € Eand X is C; near subtraction semigroup. .. eX =e X e for some x € X.

= exe = eu and ex = eve for some u, v in X.

Nowexe=(ex)e=(eve )e=eve =€X ............ (1)

Since X isa C; near subtraction semigroup. . Xe = eXe for some x € X.

= exe = ue and xe =eve for some u, vin X.

Now exe =e (xe) =e (evbe) =eve =xe ........... (2)

From (1) and (2) we get ex = exe = xe . Hence E < C (X).

Conversely, assume that X is C; near subtraction semigroup and every idempotent is central. (ie) ex = xe .
LetueeXe=u=ex'e=x"ee=x"e€eXe, forallx' e X. ~eXec Xe ........... 3)
LetueXe=u=xe=exeeX=eXe, forallxeX.~XeceXe ........... 4

From (1) and (2) we get Xe = eXe . Hence X is a C, near subtraction semigroup.
Theorem:3.7. Let X be a C; near subtraction semigroup then X has strong IFP.

Proof: Let | be an ideal of C; near subtraction semigroup of X.

Assume that ab € I, for all a, b € X.

For ne X,aneaX=aXa=an=an'a, foralln’ € X.

anb =an’ab € XI € | = anb € I. Hence X has strong IFP.

Theorem:3.8. If X is a zero symmetric C; near subtraction semigroup then X has an IFP.
Proof: Let X is a zero symmetric C; near subtraction semigroup.

If ab =0, forsome a, b € Xand an € aX = aXa, for some n € X.

= an=an’a,forsomen’ € X.

= anb=an’ab=an’.0=0= anb =0. Hence X has an IFP.

Theorem:3.9. If X is a C; near subtraction semigroup then X has an IFP.

Proof: Let X is a C, near subtraction semigroup.
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If ab =0, for some a, b € Xand nb € Xb =bXb, for some n € X.
= nb=bn’b, forsomen’ € X
= anb=abn'b=0.n"b=0= anb =0. Hence X has an IFP.
Theorem:3.10. Let X be a C; be a near subtraction semigroup , if xX = yX then Xx = Xy, for all a, b € X.
Proof: Let X be a C; be a near subtraction semigroup.
If xX=yX, forsome X,y € X.
Let X EXX=YX=yXy = x=y n'y, for some n’ € X [ C; is near subtraction semigroup]
= nNX=nyn'y = XXEXy......... (1)
Simillarly, let y € yX =xX=xXX = y =x n’ X, for some n’ € X
[~ € is near subtraction semigroup]
=Sny=nxn'X =Xy XX........... (2)
From (1) and (2), hence Xx = Xy.
Theorem:3.11. Let X be a C, be a near subtraction semigroup , if Xx = Xy then xX = yX, for all a, b € X.
Proof: Let X be a C, be a near subtraction semigroup.
Assume Xx = Xy, forsome X,y € X.
Letx exX=xY =yXy = x=yn'Yy, for some n’ € X [~ C, is near subtraction semigroup]
=XN=yn'yn =xXXEyX........... (1)
Simillarly, let y € Xy = XX =xXX = y =x n’ X, for some n’ € X
[+ C, is near subtraction semigroup]
= Yyn=Xn'Xn = yXEXX........... (2)
From (1) and (2), hence xX =y X.

Corollary:3.11.1 If X is a C; and C, near subtraction semigroup then Xx = Xy < Xx = YXx, for all x, y
e X.
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Theorem:3.12. Let X is a s, C; and C; near subtraction semigroup then M; n M, = M; M, for any two

left N-subgroup M, and M, of X.
Proof: Let X isa s, C; and C, near subtraction semigroup and let X € M; n M,, then
X € M, and X € M,.
Let x € Xx = xXx [since C, is near subtraction semigroup ]

=XXXX € XM; XM, € M, M,
Therefore M; N M, S M{M, ........... (1)
If x € M;M, then x =yz, for some YE M, and Z € M,.
Now x =yz € yX=yXy € X M, € M, [since C; is near subtraction semigroup ]
Alsox =yz € Xz=zXz€ X M, € M, [since C, is near subtraction semigroup ]
Therefore M\M, EM; N M, .......... (2)
From (1) and (2), hence M; N M, = M, M,.
Remark: 3.13. Let X be a S either C; or C, near subtraction semigroup then X is regular.
Proof: For every x € xX =x X X [ -~ C; is near subtraction semigroup]

For every X € Xx =x XX [~ C, is near subtraction semigroup]
Hence X is regular.
Remark: 3.14. Let sis a C; near subtraction semigroup then X is strongly regular.
Proof: For all x € X, let X € XX = x X X = XXxX € Xx? = x € Xx?
Hence X is strongly regular.

Theorem:3.15. Let X be a s, C; near subtraction semigroup. Then X is strongly regular iff
B = BXB, for every bi-ideal B of X.

Proof: Let X isas, C; - near subtraction semigroup and X is strongly regular. Then X is regular. Let B
be bi-ideal of X. Now for b € B, b = bab € BXB, for some a € X.

Thus B € BXB, for every bi —ideal B of X.
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Conversely, let a € X, Xa is a bi-ideal of X. Since X is a s-near subtraction semigroup.
Let a € Xa = XaXXa € XaXa = XaXaa € Xa?.Therefore a € Xa?.
Hence X is strongly regular.

Theorem:3.16. Let X be a s, C; near subtraction semigroup. Then B = BXB, for every bi-ideal B of X iff

X is a left bi-potent near subtraction semigroup.

Proof: Let X is a left bi-potent near subtraction semigroup. Let B be a bi-ideal of X. Since X is a s-near
subtraction semigroup. let be bX =bXb =bXbb € X b% . Thus X is styrongly regular. By theorem 3.15, B =
BXB for every bi-ideal B of X.

Conversely let a € X. Then Xa is a bi-ideal of X.

Let y € Xa = XaXXa € XaXa = XaXaa € Xa?. Therefore Xa € Xa?.

But Xa? € Xa, for all a € X. Therefore Xa? = Xa.

Hence X is a left bi-potent near subtraction semigroup.

Lemma: 3.17. [ Refer V.Mahalakshmi [5] ]

Let X be a zero — symmetric near subtraction semigroup. If L = { 0 }, then
en=ene, for0 e € Eandn e X.

Lemma: 3.18. [ Refer V.Mahalakshmi [5] ]

If X has the condition, eX = eXe = Xe, for all e € E, then E € C(X).
Remark: 3.19. [ Refer V.Mahalakshmi [5] ]. The following are equivalent

(i) Xisa GNF.
(i) Xis regular and each idempotent is central.

(iii) X is regular and subcommutative.

Theorem:3.20. Let X be a left permutable s- near subtraction semigroup then the following are equivalent.

(1) X is C; - near subtraction semigroup.
(i) B = BXB for every bi-ideal B of X.
(ilf) Q = QXAQ for every quasi-ideal Q of X.

(iv) X is left bi-potent near subtraction semigroup.
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(v) Xisregular.
(vi) aXa = Xa = Xa? forall a € X.

(vii) X isa C, near subtraction semigroup and X is strongly regular.
(viii) X is GNF.
Proof: (i) = (i) Assume that X is C; - near subtraction semigroup.
By remark:3.14, X is strongly regular.
By theorem:3.16, B=BXB for every bi-ideal B of X.

(1) = (1) Since every quasi-ideal is also a bi-ideal. We have Q = QXQ for every quasi-
ideal Q of X.

(iii) = (iv) Leta € X then Xa is a quasi-ideal of X.
If x € Xa = XaXXa € XaXathenx = x, ax, a, for some x,, x, € X. Since X be a left

permutable s- near subtraction semigroup. Therefore x = x; ax, a=x; x, a® € X a?.
That is Xa € X a?. But X a? € Xa, for all a € X. Therfore Xa? = Xa.
Hence X is left bi-potent near subtraction semigroup.
(iv) = (v) Leta € Xa = X a?.This implies that X is strongly regular. Then X is regular.
(v)=(vi) Let x € aXa. Since X is left permutable s- near subtraction semigroup.
Nowx=ax;a=x; a’€ Xa?=>aXacXa?......... (1)
Simillarly x € X a? = Xaathenx =x; aa=ax;a€aXa= Xa?CaXa........... )
From (1) and (2), we get aXa = X a?. Since X is regular for every a € X, there exists
X € X such that a = axa. Thus Xa = Xaxa € XaXa . That is for every y € Xa,
y=x;ax,a=x; x, a? € X a?. Therefore Xa € X a?. But X a? € Xa, forall a € X.
Hence aXa = X a? = Xa, foreverya € X.
(vi) = (vii) Obviously true. Therefore X is a C, near subtraction semigroup and
X is strongly regular. Since x is strongly regular. Let a € X a? then L = { 0}.

Then by Lemma:3.17, eXe = eX, for every e € E. Since X is C, near subtraction semigroup. Therefore Xe

=eXe and so eX =eXe = Xe for every e € E.
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Again by the Lemma: 3.18, E < C(X). Hence X is GNF.

(viii) = (1) Let X is a GNF, by Remark:3.19, X is regular and sub commutative for a € X.
Now aX = axaX = axXa € aXXa € aXa. This impliessaX C aXa ........... (1)
Obviously,aXa € aX ......... ().

From (1) and (2), we get aX = aXa. Hence X is C; near subtraction semigroup.
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