BI-IDEALS IN C₁ AND C₂ NEAR SUBTRACTION SEMIGROUPS

P.ANNAMALAI SELVI¹

¹Research Scholar

Dr.S.JAYALAKSHMI²

²Head and Associate Professor

Department of Mathematics, Sri Parasakthi College for Women, Courtallam, Tamilnadu. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India.

Abstract:

In this paper we introduce the notation of bi-ideals in C_1 and C_2 near-subtraction semigroup and study some of their properties.

Key words:

Near subtraction semigroups, IFP, strong IFP, GNF, bi-ideals in C_1 and C_2 near-subtraction semigroup.

1. Introduction

B.M.Schein [7] considered systems of the form (X; o;/), where X is a set of functions closed under the composition "o" of functions (and hence (X; o) is a function semigroup) and the set theoretic subtraction "/" (and hence (X;/) is a subtraction algebra in the sense of [1]). Y.B.Jun et al[4] introduced the notation of ideals in subtraction algebras and discussed the characterization of ideals. For basic definition one may refer to Pilz[6]. Mahalakshmi et al. [5] studied the notation of bi-ideals in near subtraction semigroups. The purpose of this paper is to introduce the notation of bi-ideals in C_1 and C_2 near-subtraction semigroups. We investigate some basic results, examples and properties.

2.Preliminaries

Definition:2.1. A nonempty set X together with binary operations "--" is said to be **subtraction algebra** if it satisfies the following conditions

(i) x-(y-x) = x. (ii) x-(x - y) = y -(y - x). (iii) (x - y) - z = (x - z) - y, for every x, y, $z \in X$.

Definition:2.2. A nonempty set X together with two binary operations "--" and "•" is said to be a **subtraction semigroup** if it satisfies the following conditions

- (i) (X,-) is a subtraction algebra.
- (ii) (X, \bullet) is a semigroup.
- (iii) x(y-z) = xy xz and (x-y)z = xz yz, for every x, y, $z \in X$.

Definition:2.3. A non empty set X together with two binary operations "-" and "." is said to be a right near

subtraction semigroup if it satisfies the following conditions

(i) (X, -) is a subtraction algebra.
(ii) (X, •) is a semigroup.
(iii) (x - y) z = xz - yz, for every x, y, z∈X.

It is clear that 0x = 0, for all $x \in X$. Similarly we can define a left near-subtraction semigroup. Here after a near-subtraction semigroup means only a right near-subtraction semigroup.

Definition:2.4. A nonempty subset S of a subtraction semigroup X is said to be a subalgebra of X, if $x-y \in S$,

for all x, $y \in S$.

Definition:2.5. Let (X, -, .) be a near – subtraction semigroup. A nonempty subset I of X is called

(i) A **left ideal** if I is a subalgebra of (X, -) and $xi - x (y - i) \in I$ for all $x, y \in X$

and $i \in I$.

- (ii) A **right ideal** I is a subalgebra of (X, -) and $IX \subseteq I$.
- (iii) If I is both a left and right ideal then, it is called a two-sided ideal (simply, ideal) of X.

Definition:2.6. A near subtraction semigroup X is said to be **Zero – symmetric** if x0 = 0 for every $x \in X$.

Definition:2.7. An element $e \in X$ is said to be **idempotent** if for each $e \in X$, $e^2 = e$.

Definition:2.8. A subalgebra Q of (X, -) is said to be a **quasi-ideal** of zero-symmetric near subtraction semigroup of X if $QX \cap XQ \subseteq Q$.

Definition: 2.9. A subalgebra B of (X, -) is said to be a **bi-ideal** of zero-symmetric near subtraction semigroup of X if $BXB \subseteq B$.

Definition:2.10. We say that X is an s (s') near subtraction semigroup if $a \in Xa(aX)$,

for all $a \in X$.

Definition:2.11. A s-near subtraction semigroup X is said to be a \overline{s} -near subtraction semigroup if $x \in xX$, for all $a \in X$.

Definition:2.12. A near subtraction semigroup X is said to be **sub commutative** if aX = Xa, for every $a \in X$.

Definition:2.13. A near subtraction semigroup X is said to be **left-bipotent** if $Xa = X a^2$, for every $a \in X$.

Definition:2.14. An element $a \in X$ is said to be **regular** if for each $a \in X$, a = aba, for some $b \in X$.

Definition:2.15. An element $a \in X$ is said to be **strongly regular** if for each $a \in X$, $a = b a^2$, for some $b \in X$.

Definition:2.16. X is said to fulfill the insertion-of factors property (IFP) provided for all

a, b, $n \in X$, $ab = 0 \Rightarrow anb = 0$.

Definition:2.17. X has **strong IFP**, if for all ideals I of X and for all $a, b \in X$, $ab \in I \Rightarrow anb \in I$.

3. Bi-ideals in C_1 and C_2 near-subtraction semigroup

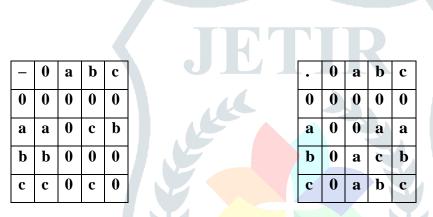
In this section we define bi-ideals in C_1 and C_2 near-subtraction semigroups and give some examples of these new concepts.

Definition:3.1. Let X be a right near subtraction semigroup. If for all $x \in X$, xX = xXx then we say X is a C_1 near subtraction semigroup.

Definition:3.2. Let X be a right near subtraction semigroup. If for all $x \in X$, Xx = xXx then we say X is a C_2 near subtraction semigroup.

Example 3.3. Let $X = \{0,a,b,c\}$ be the Klein's four group. Define subtraction and multiplication

in X as follows:



Here (X, -, .) is a near subtraction semigroup (see [[6], pg.407] scheme 4 (0, 14, 2, 1)).

Then X is a C_1 near subtraction semigroup. But X is not a C_2 near subtraction semigroup. Since Xa \neq aXa.

Example 3.4. Let $X = \{0,a,b,c\}$ be the Klein's four group. Define subtraction and multiplication in X as follows:

-	0	a	b	c	•	0	a	b	c
0	0	0	0	0	0	0	0	0	0
a	a	0	a	a	a	0	a	0	c
b	b	b	0	0	b	0	0	0	0
c	c	b	a	0	c	0	a	0	c

Here (X, -, .) is a near subtraction semigroup (see [[6], pg.407] scheme 14 (0, 7, 0, 9)).

Then X is a C_2 near subtraction semigroup. But X is not a C_1 near subtraction semigroup. Since $cX \neq cXc$.

Remark:3.5. Neither $C_1 \Rightarrow C_2$ near subtraction semigroup.

Lemma:3.6. Let X is a C_1 and C_2 near subtraction semigroup \Leftrightarrow X is C_1 near subtraction semigroup and every idempotent is central.

Proof: To prove that X is C_1 near subtraction semigroup and every idempotent is central.

Since $e \in E$ and X is C_1 near subtraction semigroup. $\therefore eX = e X e$ for some $x \in X$.

 \Rightarrow exe = eu and ex = eve for some u, v in X.

Now exe = (ex) e = (eve) e = eve = ex(1)

Since X is a C_2 near subtraction semigroup. \therefore Xe = eXe for some x \in X.

 \Rightarrow exe = ue and xe = eve for some u, v in X.

Now exe = e(xe) = e(evbe) = eve = xe(2)

From (1) and (2) we get ex = exe = xe. Hence $E \subseteq C(X)$.

Conversely, assume that X is C_1 near subtraction semigroup and every idempotent is central. (ie) ex = xe .

Let $u \in eXe \implies u = e x' e = x' e e = x' e \in Xe$, for all $x' \in X$. $\therefore eXe \subseteq Xe$ (3)

Let $u \in Xe \implies u = xe = ex \in eX = eXe$, for all $x \in X$. $\therefore Xe \subseteq eXe$ (4)

From (1) and (2) we get Xe = eXe. Hence X is a C_2 near subtraction semigroup.

Theorem:3.7. Let X be a C_1 near subtraction semigroup then X has strong IFP.

Proof: Let I be an ideal of C_1 near subtraction semigroup of X.

Assume that $ab \in I$, for all $a, b \in X$.

For $n \in X$, $an \in aX = aXa \implies an = a n'a$, for all $n' \in X$.

anb = a $n'ab \in XI \subseteq I \implies anb \in I$. Hence X has strong IFP.

Theorem:3.8. If X is a zero symmetric C_1 near subtraction semigroup then X has an IFP.

Proof: Let X is a zero symmetric C_1 near subtraction semigroup.

If ab = 0, for some $a, b \in X$ and $an \in aX = aXa$, for some $n \in X$.

 \Rightarrow an = a n' a , for some $n' \in X$.

 \implies anb = a n' a b = a n'. 0 = 0 \implies anb = 0. Hence X has an IFP.

Theorem:3.9. If X is a C_2 near subtraction semigroup then X has an IFP.

Proof: Let X is a C_2 near subtraction semigroup.

If ab = 0, for some $a, b \in X$ and $nb \in Xb = bXb$, for some $n \in X$.

 \implies nb= b n' b , for some $n' \in X$

 \Rightarrow anb = ab n' b = 0. n' b = 0 \Rightarrow anb = 0. Hence X has an IFP.

Theorem:3.10. Let X be a C_1 be a near subtraction semigroup, if xX = yX then Xx = Xy, for all $a, b \in X$.

Proof: Let X be a C_1 be a near subtraction semigroup.

If xX = yX, for some $x, y \in X$.

Let $x \in xX = Yx = yXy \implies x = y n'y$, for some $n' \in X$ [$\therefore C_1$ is near subtraction semigroup]

 \Rightarrow nx = n y n' y \Rightarrow Xx \subseteq Xy(1)

Similarly, let $y \in yX = xX = xXx \implies y = x n' x$, for some $n' \in X$

[$\therefore C_1$ is near subtraction semigroup]

$$\Rightarrow$$
 ny = n x n' x \Rightarrow Xy \subseteq Xx(2)

From (1) and (2), hence Xx = Xy.

Theorem:3.11. Let X be a C_2 be a near subtraction semigroup, if Xx = Xy then xX = yX, for all $a, b \in X$.

Proof: Let X be a C_2 be a near subtraction semigroup.

Assume Xx = Xy, for some $x, y \in X$.

Let $x \in xX = xY = yXy \implies x = y n'y$, for some $n' \in X$ [: C_2 is near subtraction semigroup]

 \Rightarrow xn = y n' yn \Rightarrow xX \subseteq yX(1)

Similarly, let $y \in Xy = Xx = xXx \implies y = x n' x$, for some $n' \in X$

[$\therefore C_2$ is near subtraction semigroup]

 \Rightarrow yn = x n' xn \Rightarrow yX \subseteq xX(2)

From (1) and (2), hence xX = yX.

Corollary:3.11.1 If X is a C_1 and C_2 near subtraction semigroup then $Xx = Xy \Leftrightarrow Xx = Yx$, for all x, y $\in X$.

JETIR1904R24 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 825

Theorem:3.12. Let X is a \bar{s} , C_1 and C_2 near subtraction semigroup then $M_1 \cap M_2 = M_1 M_2$ for any two left N-subgroup M_1 and M_2 of X.

Proof: Let X is a \bar{s} , C_1 and C_2 near subtraction semigroup and let $x \in M_1 \cap M_2$, then

 $x \in M_1$ and $x \in M_2$.

Let $x \in Xx = xXx$ [since C_2 is near subtraction semigroup]

$$= xxXx \in XM_1XM_2 \subseteq M_1M_2$$

Therefore $M_1 \cap M_2 \subseteq M_1 M_2$ (1)

If $x \in M_1M_2$ then x = yz, for some $y \in M_1$ and $z \in M_2$.

Now $x = yz \in yX = yXy \in X$ $M_1 \subseteq M_1$ [since C_1 is near subtraction semigroup]

Also $x = yz \in Xz = zXz \in X$ $M_2 \subseteq M_2$ [since C_2 is near subtraction semigroup]

Therefore $M_1 M_2 \subseteq M_1 \cap M_2$ (2)

From (1) and (2), hence $M_1 \cap M_2 = M_1 M_2$.

Remark: 3.13. Let X be a \overline{S} either C_1 or C_2 near subtraction semigroup then X is regular.

Proof: For every $x \in xX = x X x$ [$\therefore C_1$ *is* near subtraction semigroup]

For every $x \in Xx = x X x$ [$\therefore C_2$ is near subtraction semigroup]

Hence X is regular.

Remark: 3.14. Let s is a C_1 near subtraction semigroup then X is strongly regular.

Proof: For all $x \in X$, let $x \in xX = x X x = xXxx \in Xx^2 \implies x \in Xx^2$

Hence X is strongly regular.

Theorem:3.15. Let X be a s, C_1 near subtraction semigroup. Then X is strongly regular iff

B = BXB, for every bi-ideal B of X.

Proof: Let X is a s, C_1 - near subtraction semigroup and X is strongly regular. Then X is regular. Let B be bi-ideal of X. Now for $b \in B$, $b = bab \in BXB$, for some $a \in X$.

Thus $B \subseteq BXB$, for every bi –ideal B of X.

Conversely, let $a \in X$, Xa is a bi-ideal of X. Since X is a s-near subtraction semigroup.

Let $a \in Xa = XaXXa \subseteq XaXa = XaXaa \in Xa^2$. Therefore $a \in Xa^2$.

Hence X is strongly regular.

Theorem:3.16. Let X be a s, C_1 near subtraction semigroup. Then B = BXB, for every bi-ideal B of X iff X is a left bi-potent near subtraction semigroup.

Proof: Let X is a left bi-potent near subtraction semigroup. Let B be a bi-ideal of X. Since X is a s-near subtraction semigroup. let $b \in bX = bXb = bXbb \in X b^2$. Thus X is styrongly regular. By theorem 3.15, B = BXB for every bi-ideal B of X.

Conversely let $a \in X$. Then Xa is a bi-ideal of X.

Let $y \in Xa = XaXXa \subseteq XaXa = XaXaa \in Xa^2$. Therefore $Xa \subseteq Xa^2$.

But $Xa^2 \subseteq Xa$, for all $a \in X$. Therefore $Xa^2 = Xa$.

Hence X is a left bi-potent near subtraction semigroup.

Lemma: 3.17. [Refer V.Mahalakshmi [5]]

Let X be a zero – symmetric near subtraction semigroup. If $L = \{0\}$, then

en = ene, for $0 \neq e \in E$ and $n \in X$.

Lemma: 3.18. [Refer V.Mahalakshmi [5]]

If X has the condition, eX = eXe = Xe, for all $e \in E$, then $E \subseteq C(X)$.

Remark: 3.19. [Refer V.Mahalakshmi [5]]. The following are equivalent

- (i) X is a GNF.
- (ii) X is regular and each idempotent is central.
- (iii) X is regular and subcommutative.

Theorem: 3.20. Let X be a left permutable s- near subtraction semigroup then the following are equivalent.

- (i) X is C_1 near subtraction semigroup.
- (ii) B = BXB for every bi-ideal B of X.
- (iii) Q = QXQ for every quasi-ideal Q of X.
- (iv) X is left bi-potent near subtraction semigroup.

- (v) X is regular.
- (vi) $aXa = Xa = Xa^2$ for all $a \in X$.
- (vii) X is a C_2 near subtraction semigroup and X is strongly regular.

(viii) X is GNF.

Proof: (i) \Rightarrow (ii) Assume that X is C_1 - near subtraction semigroup.

By remark:3.14, X is strongly regular.

By theorem: 3.16, B=BXB for every bi-ideal B of X.

(ii) ⇒ (iii) Since every quasi-ideal is also a bi-ideal. We have Q = QXQ for every quasi-ideal Q of X.

 $(iii) \Rightarrow (iv)$ Let $a \in X$ then Xa is a quasi-ideal of X.

If $x \in Xa = XaXXa \subseteq XaXa$ then $x = x_1 a x_2 a$, for some $x_1, x_2 \in X$. Since X be a left permutable s- near subtraction semigroup. Therefore $x = x_1 a x_2 a = x_1 x_2 a^2 \in X a^2$.

That is $Xa \subseteq X a^2$. But $X a^2 \subseteq Xa$, for all $a \in X$. Therfore $Xa^2 = Xa$.

Hence X is left bi-potent near subtraction semigroup.

 $(iv) \Rightarrow (v)$ Let $a \in Xa = X a^2$. This implies that X is strongly regular. Then X is regular.

 $(\mathbf{v}) \Rightarrow (\mathbf{vi})$ Let $\mathbf{x} \in aXa$. Since X is left permutable s- near subtraction semigroup.

Now $x = a x_1 a = x_1 a^2 \in Xa^2 \Rightarrow aXa \subseteq Xa^2 \dots (1)$

Similarly $x \in X a^2 = Xaa$ then $x = x_1 aa = ax_1 a \in aXa \Rightarrow X a^2 \subseteq aXa$ (2)

From (1) and (2), we get $aXa = X a^2$. Since X is regular for every $a \in X$, there exists

 $x \in X$ such that a = axa. Thus $Xa = Xaxa \in XaXa$. That is for every $y \in Xa$,

$$y = x_1 a x_2 a = x_1 x_2 a^2 \in X a^2$$
. Therefore $Xa \subseteq X a^2$. But $X a^2 \subseteq Xa$, for all $a \in X$.

Hence $aXa = X a^2 = Xa$, for every $a \in X$.

 $(vi) \Rightarrow (vii)$ Obviously true. Therefore X is a C_2 near subtraction semigroup and

X is strongly regular. Since x is strongly regular. Let $a \in X a^2$ then $L = \{ 0 \}$.

Then by Lemma:3.17, eXe = eX, for every $e \in E$. Since X is C_2 near subtraction semigroup. Therefore Xe

⁼ eXe and so eX = eXe = Xe for every e ∈ E. JETIR1904R24 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 828

Again by the Lemma: 3.18, $E \subseteq C(X)$. Hence X is GNF.

(viii) \Rightarrow (i) Let X is a GNF, by Remark:3.19, X is regular and sub commutative for a \in X.

Now $aX = axaX = aXXa \in aXXa \subseteq aXa$. This implies $aX \subseteq aXa$ (1)

Obviously, $aXa \subseteq aX \dots(2)$.

From (1) and (2), we get aX = aXa. Hence X is C_1 near subtraction semigroup.

REFERENCES

- [1]. J. C. Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass. 1969.
- [2]. P.Dheena and G.Satheesh Kumar, On strongly regular near subtraction semigroups, commun. Korean Math. Soc. 22(2007), No.3, pp. 323-330.
- [3]. S.Jayalakshmi A study on Regularities in near rings, PhD thesis, Manonmaniam Sundaranar University, 2003.
- [4]. Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65(2007), no.1, 129-134.
- [5]. V.Mahalakshmi, S.Maharasi and S.Jayalakshmi. Bi-ideals of near subtraction semigroup, Indian Advances in Algebra 6(1)(2013)35-48.
- [6]. Pilz Gunter, Near-rings, North Holland, Amsterdam, 1983.
- [7]. B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.